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Consequences of special relativity.

The “length” of moving objects.

Recall that in special relativity, “simultaneity” depends on the frame of reference of the
observer. Thus, we are allowed to synchronize only those clocks which are at rest with
respect to one another (and, for the moment at least, at rest in an inertial frame). Now,
what do we mean by the “length” of an object? If the object is at rest in our reference
frame, there is no problem: we simply mark off the points of our frame with which its
ends coincide, and determine the length ∆x ≡ L between them, which by hypothesis is
independent of time. Call this the ”proper” length.

What if the object is moving with respect to us? We then need to extend the
definition of (apparent) “length”. The most natural definition is this: Consider two
lights, say, attached to the front and back of the moving object. Suppose they each emit
a sequence of (arbitrarily closely spaced) flashes, so that two of these flashes (”events”)
occur simultaneously as judged by us. Then we define Lapp as the spatial separation
judged by us to occur between these two “simultaneous” events. I.e. “length is the
distance between events occurring at the front and back at the same time”. Now we
can apply the Lorentz transformation directly: let ∆x, ∆t be the separation of the two
events as judged by an observer sitting on the bar, (note ∆t is unknown so far!) and
∆x′, ∆t′ be the separation judged by us, then we can apply the Lorentz transformation
in reverse: if v is the velocity of the object relative to us, then −v is our velocity relative
to it, so (applying a Lorentz transformation with velocity −v)

∆x =
∆x′ + v∆t′√

1− v2/c2

and another equation for ∆t which we do not need for present purposes. However, ∆t′

is by construction zero, and ∆x is the distance between the front and back events as
judged by an observer with respect to whom the rod is at rest, i.e, exactly what we mean
by the “proper” (true) length L. Thus,

∆x ≡ L = ∆x′/
√

1− v2/c2, or since Lapp ≡ ∆x′

Lapp = L
√

1− v2/c2

Thus, “moving rods appear shorter”-the celebrated Lorentz contraction. Note this was
also obtained in the Lorentz theory in which the contraction is a real physical effect of
motion through the ether (see Lecture 11): in special relativity it is simply a consequence
of the revised definition of simultaneity.

The “pole-in-barn” paradox : A man carrying a 20′ pole rushes into a 15′ barn at 0.8
of the speed of light, so that γ(v) ≡ 1/

√
1− v2/c2 is 5/3. Does the pole fit into the

barn? According to an observer at rest with respect to the barn,

Lapp = L/γ(v) =
3
5

L = 12′
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i.e. the pole looks only 12′ long, so it does fit into the 15′ barn. But according to an
observer traveling with the pole (who is an equally good inertial observer!), the pole is
its original length, 20′, and it is the barn which is contracted (to 3/5× 15′ = 9′)! Thus
the pole certainly does not fit into the barn. Who is right?

Answer: both, or neither! The point is that the concept “fit into” implicitly requires
a definition of simultaneity: if A and B are events occurring “simultaneously” at the
back and front ends of the pole, and C and D events occurring simultaneously with A
and B at the near and forward ends of the barn, then the statement that “the pole fits
into the barn” is equivalent to the statement that there exists a time t such that for
events occurring at that time,

xC ≤ xA, xB ≤ xD

and this statement is not Lorentz invariant∗, since “simultaneity” depends on the refer-
ence frame. (Note the smallness of the effect: for a spaceship, the escape velocity from
Earth vesc ≈ 11 km/sec, so at this velocity the difference between (1− v2/c2)−1/2 and 1
is only a factor of about 10−9).

Time dilation.

Consider two events associated with the same physical object and occurring at the same
point with respect to it, e.g. two successive ticks of a clock. The ”proper time” elapsed
between these two events is defined to be the time difference as measured in the frame
with respect to which the clock is at rest (”traveling with the clock”). How will these
events be separated in time as judged by an observer with respect to whom the clock is
moving at speed v? We now apply the Lorentz transformation directly

∆t′ =
∆t− v∆x/c2√

1− v2/c2

but ∆x = 0 by construction, hence

Tapp = Tproper/
√

1− v2/c2 > Tproper

i.e. moving clocks appear to run slow! (“Fitzgerald time dilatation”: again, asserted
in pre-relativistic theory as a “physical” effect of motion relative to the aether.) This
prediction is experimentally verified by observing the apparent rate of decay of muons
incident on Earth with velocities comparable to c; the rate is appreciably slower than
that of the same muons when at rest in the laboratory.

The “twin” paradox : Imagine two identical twins, say Alice and Barbara. Alice stays
at home: Barbara embarks in a spaceship, accelerates to a high velocity v, travels for
a long time at that velocity, then switches on the rocket engines to reverse her velocity,
returns to earth and finally decelerates to rest to join Alice. When they compare notes,

∗A statement is said to be “Lorentz invariant” if its truth (or falsity) is independent of the inertial
frame in which it is asserted.
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have they aged the same amount? (Assume that Barbara’s biological processes are not
affected physically by the process of acceleration and are determined by the proper time
elapsed, that is, the time measured by a clock traveling with her).

This is a slightly tricky problem, because it is tempting to argue that there must
be exact symmetry between A and B: according to B, it is A who has traveled and
returned, so if A can legitimately say to B “you don’t look a day older!” B should
equally well be able to say the same to A, hence they must have aged at the same rate.
But this argument is fallacious: Alice has not at any point accelerated relative to an
inertial frame, whereas Barbara has. Thus there is no a priori reason why we should not
get an asymmetry. Alice is certainly an inertial observer, so we can trust her conclusions.
Once Barbara is well under way at a steady velocity v, she (Alice) can certainly argue
that Barbara’s clock runs slow compared to her own, by a factor γ−1 =

√
1− v2/c2.

But what of the periods when Barbara is accelerated? Alice can argue that even if there
is an effect associated with these periods (actually there isn’t) it should be independent
of the total time elapsed (i.e, of the length of the constant-velocity phase), and hence
should be negligible in the limit T → ∞. Thus B really has aged, on her return, less
than A by a factor

√
1− v2/c2.

? Problem: why can’t Barbara make the same argument about the effects of (her
own) acceleration?

Experimental confirmation of (something related to) the twin paradox: clocks carried
around the world in an airliner. (v/c ∼ 10−6!)

Relativistic Doppler effect

Suppose a source S and a receiver R are in uniform relative motion with velocity v (of S
away from R). The source emits flashes (or crests ofa light wave, etc.) at frequency ν0 as
measured in its own frame. What is the frequency “seen” by R? I.e. at what frequency
does R receive them?

According to R, if T0 ≡ 1/ν0 is the period between flashes as seen by S, then R
“sees” them emitted at intervals† (∆x ≡ 0, ∆t ≡ T0)

T ′ = T0/
√

1− v2/c2

and moreover he sees that their spatial separation ∆x′ (if S is moving away) as +vT0/
√

1− v2/c2.
Consequently, the time interval between receipts is

Trec = T ′ +
∆x′

c
= T0

1 + v/c√
1− v2/c2

= T0

√
1 + v/c

1− v/c

and so (for a source moving away)

ν = ν0

√
1− v/c

1 + v/c

†Primed (unprimed) variables refer to quantities measured in the frame of R(S).
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(and for motion “towards”, v → −v). Note that the nonrelativistic formula ν = ν0
1+vr
1+vs

(Lecture 9) agrees with this for vr, vs � c (in this limit the 1+vr
1+vs

is approximately

1− vs−vr
c = 1− v/c, which is also the approximate value of

√
1+v/c
1−v/c for v � c).

Minkowski space: space-time diagrams

Digression: rotation of coordinate systems in ordinary Euclidean space. To set up a
coordinate system in ordinary 3D space, we must do two things:

(1) choose an “origin” of coordinates – e.g. the intersection of University and Race at
ground level,

(2) choose a system of three mutually perpendicular axes, e.g. x = NS, y = EW, z =
vertical.

Then (e.g.) my position now is approximately (-0.5 km, -1 km, -2 m). From now on I
neglect the z-coordinate. My distance from the origin is ≈

√
(−1)2 + 0.52 ≈ 1.1 km.

Suppose now that we decide to keep the origin fixed but make a new choice of axes,
which must however remain mutually perpendicular. E.g. leaving z fixed, we choose a
new x-axis at an angle θ to the W of the original x-axis (N): to preserve perpendicularity
we must then have the new y-axis θ N of E .

It is clear that my x- and y-coordinates are now changed‡:

N

E

S

W

origin origin

my new x-coordinate (x′) is still negative but less than x, and my y-coordinate (y′) is
somewhat increased. But obviously my distance from the origin (which is unshifted!)
has not changed. This is guaranteed by Pythagoras’s theorem, which tells me that

s =
√

x2 + y2 =
√

x′2 + y′2

and one can verify explicitly that indeed x2 + y2 = x′2 + y′2. Note also that the above
rotation is area-preserving: A = ∆x∆y, but equally A = ∆x′∆y′§. Neither coordinate
system is “privileged”, each is as good as the other.

‡Technically: x′ = x cos θ + y sin θ, y′ = y cos θ − x sin θ.
§The area of the block marked A cannot be affected by tilting it so that the sides are parallel to the

x′ and y′ axes.
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Now consider the possibility of treating time on an equal footing with the space
coordinate (consider one space dimension for simplicity). We start with a given reference
system and consider an event with space coordinate x, at time t. Under a Lorentz
transformation to a moving coordinate system (keeping the origin fixed) we have

x′ =
x− vt√
1− v2/c2

, t′ =
t− vx/c2√
1− v2/c2

The first thing we must do is to measure time in units of (distance/c) (or vice versa,
distance in terms of c× time): in these units v is measured in units of c. It is then
tempting to think of a Lorentz transformation as a “rotation” of our space-time coor-
dinate system. However, there is an important difference, because of the fact that the
Lorentz transformation formulae for both x and t contain minus signs. As a result, we
do not have

x2 + t2 = x′2 + t′2

but rather
x2 − t2 = x′2 − t′2

Then are two obvious ways of handling this difference so as to make an analogy with
spatial rotation.

(a) We can introduce in place of t the “imaginary” coordinate τ ≡ it; then everything
is in exact analogy with spatial rotations. This is convenient for formal calculations
but doesn’t help much with intuition.

(b) We can introduce the following transformation: introduce an angle θ by¶

tan θ = v/c

then rotate the x and t axes towards one another, each by the angle θ. Note when
θ = 45◦, i.e. v = c, the two new x′ and t′ axes coincide).

(Note: This does not correspond to x′ = x cos θ−y sin θ, etc., because of the scale factor,
see below.)

¶The function tan θ is essentially the slope of a line oriented at angle θ to the horizontal (cf. diagram).
If you are unfamiliar with trigonometric functions, just look at the diagram!
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Clearly, two events (x, y) which are at the same point in space (x1 = x2) in the old
diagram are not so in the new one, and vice versa.

But equally, events which are simultaneous in S will not be simultaneous in S′.
There is one important catch about the use of this diagram: If we simply mark off,

as “unit distance” and “unit time”, the same interval on the x′, t′ axes as on the x, t
ones, it is easy to see that

(a) area is not preserved, i.e. A 6= ∆x′∆y′ and

(b) ∆s′2 6= ∆s2 (this is easy to see because as θ → 45◦, there is no distinction between
∆x′ and ∆t′ so ∆s′2 → 0).

It can be verified that remedying (a) also remedies (b), i.e. we must mark off the ”unit
intervals” in S’ so that unit interval corresponds to unit area (A = ∆x′∆y′). It is clear
that since the angle of the parallelograms is 2θ, this requires us to expand the “unit
interval” along the ∆x′ and ∆t′ axes by a factor 1/

√
cos 2θ ≡

√
(1 + v2/c2)/(1− v2/c2).

Generally speaking, this kind of Minkowski space-time diagram is useful for qualitative
visualization but rather less so for quantitative calculations.

Addition of velocities in special relativity

Suppose that system S′ moves in the positive x-direction relative to S with velocity
u, and S′′ moves in the positive x-direction relative to S′ with velocity v. With what
velocity does S′′ move relative to S?

At first sight the answer is obvious: with velocity (u + v)! But then, e.g. if u = v =
0.8c, (u + v) > c, and so the denominator in the Lorentz transformation formulae would
be imaginary. So something is wrong.‖

Let’s consider 2 events as observed from S, S′, and S′′, and apply the Lorentz
transformation explicitly: If their space and time separations in S are respectively ∆x,
∆t then as observed from S′ they are

∆x′ =
∆x− u∆t√
1− u2/c2

, ∆t′ =
∆t− u∆x/c2√

1− u2/c2

‖We know we “cannot catch up with light”, since c is the same in all frames of reference.
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Then, applying the Lorentz transformation between S′ and S′′, we have

∆x′′ =
∆x′ − v∆t′√

1− v2/c2
=

∆x(1 + uv/c2)− (u + v)∆t√
(1− u2/c2)(1− v2/c2)

∆t′′ =
∆t′ − u∆x′√

1− v2/c2
=

∆t(1 + uv/c2)− (u + v)∆x/c2√
(1− u2/c2)(1− v2/c2)

Consider the special case ∆x′′ = 0, i.e. we consider the origin of the S′′ coordinate system
as viewed from S. It clearly moves at a speed w given by

w =
∆x

∆t
=

u + v

1 + uv/c2

Thus, it seems plausible that the speed of S′′ relative to S is w, and indeed it turns out
with a bit of simple algebra that ∆x′′, ∆t′′ are related to ∆x, ∆t precisely by a single
Lorentz transformation with velocity w.

Since if u < c and v < c then (u + v)/(1 + uv/c2) is always < c,∗∗ it is consistent to
assume that the speed of light is a limiting velocity for the relative motion of any two
inertial frames. We can indeed never “catch up” with light!

Future, past and elsewhere in special relativity

Consider two events E1, E2 with arbitrary spacetime separation. We recall that the
quantity

∆s2 ≡ ∆x2 − c2∆t2

is Lorentz-invariant, that is, it is reckoned to be the same by all observers. But, since ∆x
and ∆t can be anything, ∆s2 can be positive, negative, or 0. What is the significance
of this?

(a) Suppose ∆x = ±c∆t exactly. Then a light signal sent from event 1 will exactly
reach event 2 (i.e. it will reach the space point x at the right time t). In view
of the invariance of ∆s2, this is true for all observers. The two events are in
this case said to be “light-like separated”, or “on one another’s light cones”. (See
graph on the next page). E2 is on the forward light cone of E1, and E1 is on the
backward light cone of E2. Note that all observers will agree on the sign of ∆t(

∆t′ = 1−v/c√
1−v2/c2

and v < c

)
(and also, assuming one dimension, on the sign of

∆x)

(b) Now suppose |∆x| < c∆t. In this case ∆s2 < 0 for all observers. It is straightfor-
ward to show that we can find a reference system in which ∆x = 0, i.e. the events
occur at the same point at different times. Also ∆x can have either sign depending
on the observer. The sign of ∆t is still unique: if one observer sees E1 occurring
before E2, so will any other. E1 and E2 are said to be “timelike separated”.

∗∗1 + uv
c2
− u+v

c
=

`
1− u

c

´ `
1− v

c

´
≥ 0



PHYS419 Lecture 12 Consequences of special relativity 8

forward
light cone of  

backward
light cone of

backward
light cone of

E1

E1

(c) Finally suppose |∆x| > c∆t. Since now ∆s2 > 0 for all observers, there is no
Lorentz transformation which will put us in a frame in which ∆x > 0. The two
events are said to be “spacelike separated”. For such events, different observers
may disagree about the time order.

It is clear that for observer O, event E2 is later than for E1, but for O′ the reverse
is true.

Causality

The word “causality” (or sometimes, “local causality”) has a special sense in special
relativity. It may embrace a weaker or stronger statement:

(1) Events which lie outside one another’s light cones cannot be causally connected
(i.e. E1 cannot exert a causal influence on E2, nor vice versa).

(2) One event (E1 ) can influence another (E2) only if E2 lies within or on the future
light cone of E1 .

Note these two claims are actually of a rather different nature: one is independent
of the “direction of time”, the other depends on it. However, if we accept that causality
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is “transitive”, i.e. if X causes Y and Y causes Z than X causes Z, then by inspection
of the diagram a violation of (2) will imply a violation of (1), i.e. (1) implies (2).

backward
light cone of

forward
light cone of  

(Here Y is in the forward light cone of X, and Z is in the backward light cone of Y ,
but Z is spacelike separated from X. If not only can X causally influence Y but Y
can causally influence Z, and causality is transitive, then X can causally influence Z,
i.e. violation of (2) implies violation of (1).)


